BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

by R. Makkonen, A. Asmi, V. M. Kerminen, M. Boy, A. Arneth, A. Guenther, M. Kulmala
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

The biosphere emits volatile organic compounds (BVOCs) which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from-1.4 to-1.8 W m -2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m -2. Although increasing future BVOC emissions provide 3-5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future. © 2012 Author(s).

Cite this document (BETA)

Readership Statistics

21 Readers on Mendeley
by Discipline
 
48% Earth Sciences
 
19% Environmental Sciences
 
10% Biological Sciences
by Academic Status
 
33% Ph.D. Student
 
33% Post Doc
 
5% Researcher (at an Academic Institution)
by Country
 
5% Canada

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in