Heating of flare loops with observationally constrained heating functions

41Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Å observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models. © 2012. The American Astronomical Society. All rights reserved..

Cite

CITATION STYLE

APA

Qiu, J., Liu, W. J., & Longcope, D. W. (2012). Heating of flare loops with observationally constrained heating functions. Astrophysical Journal, 752(2). https://doi.org/10.1088/0004-637X/752/2/124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free