Measured and predicted aerosol light scattering enhancementfactors at the high alpine site Jungfraujoch

66Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20-95%. In this paper we present measurements of light scattering enhancement factors f (RH)= σsp (RH)/ σsp (dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580ma.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f (RH) is available so far. At this site, f (RH=85%) varied between 1.2 and 3.3. Measured f (RH) agreed well with f (RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f (RH) predictions at RH<85% were also obtained with a simplified model, which uses the Å ngström exponent of σsp (dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol. © Author(s) 2010. This work is distributed under.

Cite

CITATION STYLE

APA

Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., & Weingartner, E. (2010). Measured and predicted aerosol light scattering enhancementfactors at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 10(5), 2319–2333. https://doi.org/10.5194/acp-10-2319-2010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free