Model based calculation for effective cancer radioimmunotherapy

9Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The major problem of tumour radioimmunotherapy remains the low tumour antibody uptake and this leads to inadequate tumour irradiation. The antibody characteristics which influence uptake have been identified and quantified previously using a non-linear compartmental model that simulates antibody distribution to tumour and body after intravenous injection. The model has now been extended, in combination with MIRD dosimetry tables, to calculate the integral tumour/body radiation dose for a range of antibody masses (1, 10 and 50 mg), sizes (binding site fragments and whale molecules) and affinities (K = 109-1013 mol-1). Antibody requirements for delivering 60 Gy to the tumour over 11.6 days were calculated for 131I and 90Y-labelled antibodies and included the effect of widely varying dose rates. The model predicted that intact antibodies of high affinity (1011-1013 mol-1) produced effective tumour radiation doses with acceptable whole body radiation levels. By contrast, antibody fragments gave higher body radiation levels and required larger injected activity because of renal excretion. The model predicted higher therapeutic indices for 90Y-labelled antibody compared with 131I.

Cite

CITATION STYLE

APA

Attard, A. R., Chappell, M. J., & Bradwell, A. R. (1995). Model based calculation for effective cancer radioimmunotherapy. British Journal of Radiology, 68(810), 636–645. https://doi.org/10.1259/0007-1285-68-810-636

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free