Abstract
We present the nested Chinese restaurant process (nCRP), a stochastic process that assigns probability distributions to ensembles of infinitely deep, infinitely branching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Specifically, we present an application to information retrieval in which documents are modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a corpus of documents, a posterior inference algorithm finds an approximation to a posterior distribution over trees, topics and allocations of words to levels of the tree. We demonstrate this algorithm on collections of scientific abstracts from several journals. This model exemplifies a recent trend in statistical machine learningthe use of Bayesian nonparametric methods to infer distributions on flexible data structures. © 2010 ACM.
Author supplied keywords
Cite
CITATION STYLE
Blei, D. M., Griffiths, T. L., & Jordan, M. I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2). https://doi.org/10.1145/1667053.1667056
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.