Abstract
A strategy for the rapid isolation of DNA probes from radiation-fusion Chinese hamster cell hybrids containing overlapping portions of the murine X chromosome based on the interspersed repetitive sequence polymerase chain reaction (IRS-PCR) previously used with human somatic cell hybrids has been developed. This specific amplification of mouse DNA on a hamster background depends on the use of primers directed to the B2 short interspersed repeat element family and the R repeat, from the long interspersed repeat element family, L1. Two sets of amplification conditions, which gave specific amplification of mouse DNA from either a mouse X-monochromosomal hybrid or irradiation-fusion hybrids having reduced X content, were defined. The mouse X-only chromosome hybrid yielded approximately 20 discrete reproducible bands, while the irradiation-fusion hybrids yielded between 1 and 10 discrete products. Comparison of different irradiation-fusion hybrids has allowed the definition of both specific and shared products corresponding to different regions within the overlapping X-chromosome fragments present within these hybrids. Use of such hybrids and the IRS-PCR technique has allowed the isolation of probes corresponding to the central region of the mouse X chromosome that contains the X-inactivation center. The method should be widely applicable to the isolation of mouse DNA sequences from mouse hybrid cell lines on either human or Chinese hamster backgrounds. © 1991.
Cite
CITATION STYLE
Simmler, M. C., Cox, R. D., & Avner, P. (1991). Adaptation of the interspersed repetitive sequence polymerase chain reaction to the isolation of mouse DNA probes from somatic cell hybrids on a hamster background. Genomics, 10(3), 770–778. https://doi.org/10.1016/0888-7543(91)90462-N
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.