Application of GA-SVM method with parameter optimization for landslide development prediction

100Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Prediction of the landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. The support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of the SVM model. In this study, we present an application of genetic algorithm and support vector machine (GA-SVM) method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in a hydro-electrical engineering area of southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models, and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest root mean square error (RMSE) of 0.0009 and the highest relation index (RI) of 0.9992. © Author(s) 2014.

Cite

CITATION STYLE

APA

Li, X. Z., & Kong, J. M. (2014). Application of GA-SVM method with parameter optimization for landslide development prediction. Natural Hazards and Earth System Sciences, 14(3), 525–533. https://doi.org/10.5194/nhess-14-525-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free