Assessing auditory distance perception using virtual acoustics

  • Zahorik P
240Citations
Citations of this article
239Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In most naturally occurring situations, multiple acoustic properties of the sound reaching a listener’s ears change as sound source distance changes. Because many of these acoustic properties, or cues, can be confounded with variation in the acoustic properties of the source and the environment, the perceptual processes subserving distance localization likely combine and weight multiple cues in order to produce stable estimates of sound source distance. Here, this cue-weighting process is examined psychophysically, using a method of virtual acoustics that allows precise measurement and control of the acoustic cues thought to be salient for distance perception in a representative large-room environment. Though listeners’ judgments of sound source distance are found to consistently and exponentially underestimate true distance, the perceptual weight assigned to two primary distance cues (intensity and direct-to-reverberant energy ratio) varies substantially as a function of both sound source type (noise and speech) and angular position (0° and 90° relative to the median plane). These results suggest that the cue-weighting process is flexible, and able to adapt to individual distance cues that vary as a result of source properties and environmental conditions.

Cite

CITATION STYLE

APA

Zahorik, P. (2002). Assessing auditory distance perception using virtual acoustics. The Journal of the Acoustical Society of America, 111(4), 1832–1846. https://doi.org/10.1121/1.1458027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free