Abstract
As the availability of spatially distributed data sets for distributed rainfall-runoff modelling is strongly increas-ing, more attention should be paid to the influence of the quality of the data on the calibration. While a lot of progress has been made on using distributed data in simulations of hy-drological models, sensitivity of spatial data with respect to model results is not well understood. In this paper we develop a spatial sensitivity analysis method for spatial input data (snow cover fraction – SCF) for a distributed rainfall-runoff model to investigate when the model is differently subjected to SCF uncertainty in different zones of the model. The anal-ysis was focussed on the relation between the SCF sensitivity and the physical and spatial parameters and processes of a distributed rainfall-runoff model. The methodology is tested for the Biebrza River catchment, Poland, for which a dis-tributed WetSpa model is set up to simulate 2 years of daily runoff. The sensitivity analysis uses the Latin-Hypercube One-factor-At-a-Time (LH-OAT) algorithm, which employs different response functions for each spatial parameter rep-resenting a 4 × 4 km snow zone. The results show that the spatial patterns of sensitivity can be easily interpreted by co-occurrence of different environmental factors such as geo-morphology, soil texture, land use, precipitation and temper-ature. Moreover, the spatial pattern of sensitivity under dif-ferent response functions is related to different spatial param-eters and physical processes. The results clearly show that the LH-OAT algorithm is suitable for our spatial sensitivity anal-ysis approach and that the SCF is spatially sensitive in the WetSpa model. The developed method can be easily applied to other models and other spatial data.
Cite
CITATION STYLE
G. Thirel, P. Salamon, P. Burek, and M. K. (2015). Assimilation of MODIS snow cover area data in a distributed hydrological model. Hydrology and Earth System Sciences, 19(4), 1887–1904.
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.