Bayesian Inference of Species Trees from Multilocus Data

2.0kCitations
Citations of this article
1.7kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Until recently, it has been common practice for a phylogenetic analysis to use a single gene sequence from a single individual organism as a proxy for an entire species. With technological advances, it is now becoming more common to collect data sets containing multiple gene loci and multiple individuals per species. These data sets often reveal the need to directly model intraspecies polymorphism and incomplete lineage sorting in phylogenetic estimation procedures.For a single species, coalescent theory is widely used in contemporary population genetics to model intraspecific gene trees. Here, we present a Bayesian Markov chain Monte Carlo method for the multispecies coalescent. Our method coestimates multiple gene trees embedded in a shared species tree along with the effective population size of both extant and ancestral species. The inference is made possible by multilocus data from multiple individuals per species.Using a multiindividual data set and a series of simulations of rapid species radiations, we demonstrate the efficacy of our new method. These simulations give some insight into the behavior of the method as a function of sampled individuals, sampled loci, and sequence length. Finally, we compare our new method to both an existing method (BEST 2.2) with similar goals and the supermatrix (concatenation) method. We demonstrate that both BEST and our method have much better estimation accuracy for species tree topology than concatenation, and our method outperforms BEST in divergence time and population size estimation.

Cite

CITATION STYLE

APA

Heled, J., & Drummond, A. J. (2010). Bayesian Inference of Species Trees from Multilocus Data. Molecular Biology and Evolution, 27(3), 570–580. https://doi.org/10.1093/molbev/msp274

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free