Abstract
Complications of chronic kidney disease (CKD) include depressed responses to insulin/IGF-1 and accelerated muscle proteolysis as a result of activation of caspase-3 and the ubiquitin-proteasome system. Experimentally, proteolysis in muscle cells occurs when there is suppression of phosphatidylinositol 3-kinase (PI3-K) activity. Postreceptor signaling through the insulin receptor substrate (IRS)/PI3-K/Akt pathway was evaluated in muscles of acidotic, CICD and pair-fed control rats under physiologic conditions and in response to a dose of insulin that quickly stimulated the pathway. Basal IRS-1-associated PI3-K activity was suppressed by CKD; IRS-2-associated PI3-K activity was increased. The basal level of activated Akt in CKD muscles also was low, indicating that the higher IRS-2-associated PI3-K activity did not compensate for the reduced IRS-1-associated PI3-K activity. Insulin treatment overcame this abnormality. The low IRS-1-associated PI3-K activity in muscle was not due to a decrease in IRS-1 protein, but there was a higher amount of the PI3-K p85 subunit protein without a concomitant increase in the p110 catalytic subunit, offering a potential explanation for the lower IRS-1-associated PI3-K activity. Eliminating the acidosis of CKD partially corrected the decrease in basal IRS-1-associated PI3-K activity and protein degradation in muscle. It is concluded that in CKD, acidosis and an increase in the PI3-K p85 subunit are mechanisms that contribute to suppression of PI3-K activity in muscle, and this leads to accelerated muscle proteolysis. Copyright © 2006 by the American Society of Nephrology.
Cite
CITATION STYLE
Bailey, J. L., Zheng, B., Hu, Z., Price, S. R., & Mitch, W. E. (2006). Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: Implications for muscle atrophy. Journal of the American Society of Nephrology, 17(5), 1388–1394. https://doi.org/10.1681/ASN.2004100842
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.