Complex network theory, streamflow, and hydrometric monitoring system design

68Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.

Abstract

Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.

Cite

CITATION STYLE

APA

Halverson, M. J., & Fleming, S. W. (2015). Complex network theory, streamflow, and hydrometric monitoring system design. Hydrology and Earth System Sciences, 19(7), 3301–3318. https://doi.org/10.5194/hess-19-3301-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free