Abstract
Graph-based dimensionality reduction (DR) methods have been applied successfully in many practical problems, such as face recognition, where graphs play a crucial role in modeling the data distribution or structure. However, the ideal graph is, in practice, difficult to discover. Usually, one needs to construct graph empirically according to various motivations, priors, or assumptions; this is independent of the subsequent DR mapping calculation. Different from the previous works, in this paper, we attempt to learn a graph closely linked with the DR process, and propose an algorithm called dimensionality reduction with adaptive graph (DRAG), whose idea is to, during seeking projection matrix, simultaneously learn a graph in the neighborhood of a prespecified one. Moreover, the pre-specified graph is treated as a noisy observation of the ideal one, and the square Frobenius divergence is used to measure their difference in the objective function. As a result, we achieve an elegant graph update formula which naturally fuses the original and transformed data information. In particular, the optimal graph is shown to be a weighted sum of the pre-defined graph in the original space and a new graph depending on transformed space. Empirical results on several face datasets demonstrate the effectiveness of the proposed algorithm. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg.
Author supplied keywords
Cite
CITATION STYLE
Qiao, L., Zhang, L., & Chen, S. (2013). Dimensionality reduction with adaptive graph. Frontiers of Computer Science, 7(5), 745–753. https://doi.org/10.1007/s11704-013-2234-z
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.