Explicit representation of subgrid variability in cloud microphysics yields weaker aerosol indirect effect in the ECHAM5-HAM2 climate model

12Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The impacts of representing cloud microphysical processes in a stochastic subcolumn framework are investigated, with emphasis on estimating the aerosol indirect effect. It is shown that subgrid treatment of cloud activation and autoconversion of cloud water to rain reduce the impact of anthropogenic aerosols on cloud properties and thus reduce the global mean aerosol indirect effect by 19%, from g-1.59 to g-1.28 W mg-2. This difference is partly related to differences in the model basic state; in particular, the liquid water path (LWP) is smaller and the shortwave cloud radiative forcing weaker when autoconversion is computed separately for each subcolumn. However, when the model is retuned so that the differences in the basic state LWP and radiation balance are largely eliminated, the global-mean aerosol indirect effect is still 14% smaller (i.e. g-1.37 W mg-2) than for the model version without subgrid treatment of cloud activation and autoconversion. The results show the importance of considering subgrid variability in the treatment of autoconversion. Representation of several processes in a self-consistent subgrid framework is emphasized. This paper provides evidence that omitting subgrid variability in cloud microphysics contributes to the apparently chronic overestimation of the aerosol indirect effect by climate models, as compared to satellite-based estimates.

Cite

CITATION STYLE

APA

Tonttila, J., Järvinen, H., & Raïsänen, P. (2015). Explicit representation of subgrid variability in cloud microphysics yields weaker aerosol indirect effect in the ECHAM5-HAM2 climate model. Atmospheric Chemistry and Physics, 15(2), 703–714. https://doi.org/10.5194/acp-15-703-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free