Abstract
We present and compare methods for feature-level (predetection) and decision-level (postdetection) fusion of multisensor data. This study emphasizes fusion techniques that are suitable for noncommensurate data sampled at noncoincident points. Decision-level fusion is most convenient for such data, but it is suboptimal in principle, since targets not detected by all sensors will not obtain the full benefits of fusion. A novel algorithm for feature-level fusion of noncommensurate, noncoincidently sampled data is described, in which a model is fitted to the sensor data and the model parameters are used as features. Formulations for both feature-level and decision-level fusion are described, along with some practical simplifications. A closed-form expression is available for feature-level fusion of normally distributed data and this expression is used with simulated data to study requirements for sample position accuracy in multisensor data. The performance of feature-level and decision-level fusion algorithms are compared for experimental data acquired by a metal detector, a ground-penetrating radar, and an infrared camera at a challenging test site containing surrogate mines. It is found that fusion of binary decisions does not perform significantly better than the best available sensor. The performance of feature-level fusion is significantly better than the individual sensors, as is decision-level fusion when detection confidence information is also available ("soft-decision" fusion).
Author supplied keywords
Cite
CITATION STYLE
Gunatilaka, A. H., & Baertlein, B. A. (2001). Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 577–589. https://doi.org/10.1109/34.927459
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.