Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters

85Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

Abstract

A new version of the biogenic volatile organic compounds (BVOCs) emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), which includes an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. Over the 2000-2009 period, using this model, we estimate mean global emissions of 465 TgC yr-1 for isoprene, 107.5 TgC yr-1 for monoterpenes, 38 Tg C yr-1 for methanol, 25 Tg Cyr-1 for acetone and 24 Tg C yr-1 for sesquiterpenes. The model results are compared to stateof-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets of the two models are, in general, in good agreement. ORCHIDEE emissions are 8% higher for isoprene, 8% lower for methanol, 17% higher for acetone, 18% higher for monoterpenes and 39%higher for sesquiterpenes, compared to the MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, where ORCHIDEE emissions are higher by 21 Tg C yr-1, and for monoterpenes, where they are higher by 4.4 and 10.2 Tg C yr-1 in northern and southern tropical regions compared to MEGAN. The geographical differences between the two models are mainly associated with different EF and plant functional type (PFT) distributions, while differences in the seasonal cycle are mostly driven by differences in the leaf area index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and light-dependent fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly depending on the compound considered. Scaling the LAI by a factor of 0.5 and 1.5 changes the isoprene global emission by .21 and C8% for ORCHIDEE and .15 and C7% for MEGAN, and affects the global emissions of monoterpenes by .43 and C40% for ORCHIDEE and .11 and C3% for MEGAN. Performing a further sensitivity test, forcing ORCHIDEE with the MODIS LAI, confirms the high sensitivity of the ORCHIDEE emission module to LAI variation. We find that MEGAN is more sensitive to variation in the LDF parameter than ORCHIDEE. Our results highlight the importance and the need to further explore the BVOC emission estimate variability and the potential for using models to investigate the estimated uncertainties.

Cite

CITATION STYLE

APA

Messina, P., Lathière, J., Sindelarova, K., Vuichard, N., Granier, C., Ghattas, J., … Hauglustaine, D. A. (2016). Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics, 16(22), 14169–14202. https://doi.org/10.5194/acp-16-14169-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free