Interaction between ice sheet dynamics and subglacial lake circulation: A coupled modelling approach

28Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Subglacial lakes in Antarctica influence to a large extent the flow of the ice sheet. In this study we use an idealised lake geometry to study this impact. We employ a) an improved three-dimensional full-Stokes ice flow model with a nonlinear rheology, b) a three-dimensional fluid dynamics model with eddy diffusion to simulate the basal mass balance at the lake-ice interface, and c) a newly developed coupler to exchange boundary conditions between the two individual models. Different boundary conditions are applied over grounded ice and floating ice. This results in significantly increased temperatures within the ice on top of the lake, compared to ice at the same depth outside the lake area. Basal melting of the ice sheet increases this lateral temperature gradient. Upstream the ice flow converges towards the lake and accelerates by about 10% whenever basal melting at the ice-lake boundary is present. Above and downstream of the lake, where the ice flow diverges, a velocity decrease of about 10% is simulated. © 2010 Author(s).

Cite

CITATION STYLE

APA

Thoma, M., Grosfeld, K., Mayer, C., & Pattyn, F. (2010). Interaction between ice sheet dynamics and subglacial lake circulation: A coupled modelling approach. Cryosphere, 4(1), 1–12. https://doi.org/10.5194/tc-4-1-2010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free