Interpreting muon radiographic data in a fault zone: Possible application to geothermal reservoir detection and monitoring

12Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Rainfall-triggered fluid flow in a mechanical fracture zone associated with a seismic fault has been estimated (Tanaka et al., 2011) using muon radiography by measuring the water position over time in response to rainfall events. In this report, the data taken by Tanaka et al. (2011) are reanalyzed to estimate the porosity distribution as a function of a distance from the fault gouge. The result shows a similar pattern of the porosity distribution as measured by borehole sampling at Nojima fault. There is a low porosity shear zone axis surrounded by porous damaged areas with density increasing with the distance from the fault gouge. The dynamic muon radiography (Tanaka et al., 2011) provides a new method to delineate both the recharge and discharge zones along the fault segment, an entire hydrothermal circulation system. This might dramatically raise the success rate for drilling of geothermal exploration wells, and it might open a new horizon in the geothermal exploration and monitoring.

Cite

CITATION STYLE

APA

Tanaka, H. K. M., & Muraoka, H. (2013). Interpreting muon radiographic data in a fault zone: Possible application to geothermal reservoir detection and monitoring. Geoscientific Instrumentation, Methods and Data Systems, 2(1), 145–150. https://doi.org/10.5194/gi-2-145-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free