Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs

56Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Solar activity is characterized by complex dynamics superimposed onto an almost periodic, approximately 11-year cycle. One of its main features is the presence of a marked, time-varying hemispheric asymmetry, the deeper reasons for which have not yet been completely uncovered. Traditionally, this asymmetry has been studied by considering amplitude and phase differences. Here, we use visibility graphs, a novel tool of nonlinear time series analysis, to obtain complementary information on hemispheric asymmetries in dynamical properties. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between factors relating to statistical and dynamical properties, i.e., effects due to the probability distribution and the regularity of observed fluctuations. We demonstrate that temporal changes in the hemispheric predominance of the graph properties lag those directly associated with the total hemispheric sunspot areas. Our findings open a new dynamical perspective on studying the north-south sunspot asymmetry, which is to be further explored in future work.

Cite

CITATION STYLE

APA

Zou, Y., Donner, R. V., Marwan, N., Small, M., & Kurths, J. (2014). Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs. Nonlinear Processes in Geophysics, 21(6), 1113–1126. https://doi.org/10.5194/npg-21-1113-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free