Abstract
Many early vision tasks require only 6 to 8 b of precision. For these applications, a special-purpose analog circuit is often a smaller, faster, and lower power solution than a general-purpose digital processor, but the analog chips lack the programmability of digital image processors. This paper presents a programmability mixed-signal array processor which combines the programmability of a digital processor with the small area and low power of an analog circuit. Each processor cell in the array utilizes a digitally programmable analog arithmetic unit with an accuracy of 1.3%. The analog arithmetic unit utilizes a unique circuit that combines a cyclic switched-capacitor analog-to-digital converter (ADC) and digital-to-analog converter (DAC) to perform addition, subtraction, multiplication, and division. Each processor cell, fabricated in a 0.8-μm triple-metal CMOS process, operates at a speed of 0.8 MIPS, consumes 1.8 mW of power at 5 V, and uses 700 μm by 270 μm of silicon area. An array of these processor cells performed an edge detection algorithm and a subpixel resolution algorithm.
Author supplied keywords
Cite
CITATION STYLE
Martin, D. A., Lee, H. S., & Masaki, I. (1998). A mixed-signal array processor with early vision applications. IEEE Journal of Solid-State Circuits, 33(3), 497–502. https://doi.org/10.1109/4.661216
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.