A model-based constraint on CO2 fertilisation

31Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

We derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a "top-down" approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorporation of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90% confidence) to exceed 20 %, with a most likely value of 40-60 %. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land-atmosphere flux (1990-2000) is estimated at -0.7 GTCyr-1 (likely, 66% confidence, in the range 0.4 to -1.7 GTCyr-1). The present-day ocean-atmosphere flux (1990-2000) is estimated to be -2.3 GTCyr-1 (likely in the range -1.8 to -2.7 GTCyr-1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC. © Author(s) 2013. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Holden, P. B., Edwards, N. R., Gerten, D., & Schaphoff, S. (2013). A model-based constraint on CO2 fertilisation. Biogeosciences, 10(1), 339–355. https://doi.org/10.5194/bg-10-339-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free