Abstract
The electric solar wind sail (E-Sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-Sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-Sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-Sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-Sail device to the asteroid. We assess alternative attachment strategies, namely straightforward direct towing with a cable and the gravity tractor method which works for a wider variety of situations. We also consider possible techniques to scale up the E-Sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider an asteroid of effective diameter of 140 m and mass of 3 million tons, which can be deflected with a baseline 1 N E-Sail within 10 years. With a 5 N E-Sail the deflection could be achieved in 5 years. Once developed, the E-Sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance. © Author(s) 2010.
Cite
CITATION STYLE
Merikallio, S., & Janhunen, P. (2010). Moving an asteroid with electric solar wind sail. Astrophysics and Space Sciences Transactions, 6(1), 41–48. https://doi.org/10.5194/astra-6-41-2010
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.