An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

35Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

Abstract

Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface scheme, with the goal of detecting the most sensitive physics and identifying those that appear most suitable for simulating the heat wave events of 2003 in western Europe and 2010 in Russia. In total, 55 out of 216 simulations combining different atmospheric physical schemes have a temperature bias smaller than 1 °C during the heat wave episodes, the majority of simulations showing a cold bias of on average 2-3 °C. Conversely, precipitation is mostly overestimated prior to heat waves, and shortwave radiation is slightly overestimated. Convection is found to be the most sensitive atmospheric physical process impacting simulated heat wave temperature across four different convection schemes in the simulation ensemble. Based on these comparisons, we design a reduced ensemble of five well performing and diverse scheme configurations, which may be used in the future to perform heat wave analysis and to investigate the impact of climate change during summer in Europe.

Cite

CITATION STYLE

APA

Stegehuis, A. I., Vautard, R., Ciais, P., Teuling, A. J., Miralles, D. G., & Wild, M. (2015). An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves. Geoscientific Model Development, 8(7), 2285–2298. https://doi.org/10.5194/gmd-8-2285-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free