Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost

147Citations
Citations of this article
153Readers
Mendeley users who have this article in their library.

Abstract

As high latitudes warm, vast stocks of carbon and nitrogen stored in permafrost will become available for transport to aquatic ecosystems. While there is a growing understanding of the potential effects of permafrost collapse (thermokarst) on aquatic biogeochemical cycles, neither the spatial extent nor temporal duration of these effects is known. To test hypotheses concerning patterns and persistence of elemental export from upland thermokarst, we sampled hydrologic outflow from 83 thermokarst features in various stages of development across the North Slope of Alaska. We hypothesized that an initial pulse of carbon and nutrients would be followed by a period of elemental retention during feature recovery, and that the duration of these stages would depend on feature morphology. Thermokarst caused substantial increases in dissolved organic carbon and other solute concentrations with a particularly large impact on inorganic nitrogen. Magnitude and duration of thermokarst effects on water chemistry differed by feature type and secondarily by landscape age. Most solutes returned to undisturbed concentrations after feature stabilization, but elevated dissolved carbon, inorganic nitrogen, and sulfate concentrations persisted through stabilization for some feature types, suggesting that aquatic disturbance by thermokarst for these solutes is long-lived. Dissolved methane decreased by 90% for most feature types, potentially due to high concentrations of sulfate and inorganic nitrogen. Spatial patterns of carbon and nutrient export from thermokarst suggest that upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.

Cite

CITATION STYLE

APA

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., & Bowden, W. B. (2015). Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12(12), 3725–3740. https://doi.org/10.5194/bg-12-3725-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free