Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4

13Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i. e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity. © 2012 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Tsutsui, H., Anami, Y., Matsuda, M., Hashimoto, K., Inoue, D., Sei, K., … Ike, M. (2013). Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4. Biodegradation, 24(3), 343–352. https://doi.org/10.1007/s10532-012-9591-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free