Abstract
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHC-OCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncertain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demonstrate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. © 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Author supplied keywords
Cite
CITATION STYLE
Zhang, Y., Chen, J., & Shen, L. (2013). Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control. Chinese Journal of Aeronautics, 26(4), 1038–1056. https://doi.org/10.1016/j.cja.2013.04.040
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.