Restoring mass conservation to shallow ice flow models over complex terrain

33Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Numerical simulation of glacier dynamics in mountainous regions using zero-order, shallow ice models is desirable for computational efficiency so as to allow broad coverage. However, these models present several difficulties when applied to complex terrain. One such problem arises where steep terrain can spuriously lead to large ice fluxes that remove more mass from a grid cell than it originally contains, leading to mass conservation being violated. This paper describes a vertically integrated, shallow ice model using a second-order flux-limiting spatial discretization scheme that enforces mass conservation. An exact solution to ice flow over a bedrock step is derived for a given mass balance forcing as a benchmark to evaluate the model performance in such a difficult setting. This benchmark should serve as a useful test for modellers interested in simulating glaciers over complex terrain. © Author(s) 2013. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Jarosch, A. H., Schoof, C. G., & Anslow, F. S. (2013). Restoring mass conservation to shallow ice flow models over complex terrain. Cryosphere, 7(1), 229–240. https://doi.org/10.5194/tc-7-229-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free