Spatial variability in floodplain sedimentation: The use of generalized linear mixed-effects models

14Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Sediment, Total Organic Carbon (TOC) and total nitrogen (TN) accumulation during one overbank flood (1.15 y return interval) were examined at one reach of the Middle Ebro River (NE Spain) for elucidating spatial patterns. To achieve this goal, four areas with different geomorphological features and located within the study reach were examined by using artificial grass mats. Within each area, 1 m2 study plots consisting of three pseudo-replicates were placed in a semi-regular grid oriented perpendicular to the main channel. TOC, TN and Particle-Size composition of deposited sediments were examined and accumulation rates estimated. Generalized linear mixed-effects models were used to analyze sedimentation patterns in order to handle clustered sampling units, specific-site effects and spatial self-correlation between observations. Our results confirm the importance of channel-floodplain morphology and site micro-topography in explaining sediment, TOC and TN deposition patterns, although the importance of other factors as vegetation pattern should be included in further studies to explain small-scale variability. Generalized linear mixed-effect models provide a good framework to deal with the high spatial heterogeneity of this phenomenon at different spatial scales, and should be further investigated in order to explore its validity when examining the importance of factors such as flood magnitude or suspended sediment concentration. © Author(s) 2010.

Cite

CITATION STYLE

APA

Cabezas, A., Angulo-Martínez, M., Gonzalez-Sanchís, M., Jimenez, J. J., & Comín, F. A. (2010). Spatial variability in floodplain sedimentation: The use of generalized linear mixed-effects models. Hydrology and Earth System Sciences, 14(8), 1655–1668. https://doi.org/10.5194/hess-14-1655-2010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free