TGF-β1-activated type 2 dendritic cells promote wound healing and induce fibroblasts to express tenascin c following corneal full-thickness hydrogel transplantation

10Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We showed previously that 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide hydrochloride (EDC) cross-linked recombinant human collagen III hydrogels promoted stable regeneration of the human cornea (continued nerve and stromal cell repopulation) for over 4 years. However, as EDC cross linking kinetics were difficult to control, we additionally tested a sterically bulky carbodiimide. Here, we compared the effects of two carbodiimide cross linkers—bulky, aromatic N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide (CMC), and nonbulky EDC—in a mouse corneal graft model. Murine corneas undergoing full-thickness implantation with these gels became opaque due to dense retro-corneal membranes (RCM). Corneal epithelial cytokeratin 12 and alpha smooth muscle actin indicative of functional tissue regeneration and wound contraction were observed in RCM surrounding both hydrogel types. However, quantitatively different levels of infiltrating CD11c+ dendritic cells (DC) were found, suggesting a hydrogel-specific innate immune response. More DC infiltrated the stroma surrounding EDC-N-hydroxysuccinimide (NHS) hydrogels concurrently with higher fibrosis-associated tenascin c expression. The opposite was true for CMC-NHS gels that had previously been shown to be more tolerising to DC. In vitro studies showed that DC cultured with transforming growth factor β1 (TGF-β1) induced fibroblasts to secrete more tenascin c than those cultured with lipopolysaccharide and this effect was blocked by TGF-β1 neutralisation. Furthermore, tenascin c staining was found in 40- to 50μm long membrane nanotubes formed in fibroblast/DC cocultures. We suggest that TGF-β1 alternatively activated (tolerising) DC regulate fibroblast-mediated tenascin c secretion, possibly via local production of TGF-β1 in early wound contraction, and that this is indirectly modulated by different hydrogel chemistries.

Cite

CITATION STYLE

APA

Mölzer, C., Shankar, S. P., Masalski, V., Griffith, M., Kuffová, L., & Forrester, J. V. (2019). TGF-β1-activated type 2 dendritic cells promote wound healing and induce fibroblasts to express tenascin c following corneal full-thickness hydrogel transplantation. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1507–1517. https://doi.org/10.1002/term.2853

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free