Understanding the kinetics of the ClO dimer cycle

50Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Among the major factors controlling ozone loss in the polar vortices in winter/spring is the kinetics of the ClO dimer catalytic cycle. Here, we propose a strategy to test and improve our understanding of these kinetics by comparing and combining information on the thermal equilibrium between ClO and Cl 2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate from laboratory experiments, theoretical studies and field observations. Concordant with a number of earlier studies, we find considerable inconsistencies of some recent laboratory results with rate theory calculations and stratospheric observations of ClO and Cl 2O2. The set of parameters for which we find the best overall consistency - namely the ClO/Cl2O2 equilibrium constant suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl 2O2 photolysis rates based on absorption cross sections in the range between the JPL 2006 assessment and the laboratory study by Burkholder et al. (1990) - is not congruent with the latest recommendations given by the JPL and IUPAC panels and does not represent the laboratory studies currently regarded as the most reliable experimental values. We show that the incorporation of new Pope et al. (2007) Cl2O2 absorption cross sections into several models, combined with best estimates for other key parameters (based on either JPL and IUPAC evaluations or on our study), results in severe model underestimates of observed ClO and observed ozone loss rates. This finding suggests either the existence of an unknown process that drives the partitioning of ClO and Cl2O2, or else some unidentified problem with either the laboratory study or numerous measurements of atmospheric ClO. Our mechanistic understanding of the ClO/Cl2O2 system is grossly lacking, with severe implications for our ability to simulate both present and future polar ozone depletion.

Cite

CITATION STYLE

APA

Von Hobe, M., Salawitch, R. J., Canty, T., Keller-Rudek, H., Moortgat, G. K., Grooß, J. U., … Stroh, F. (2007). Understanding the kinetics of the ClO dimer cycle. Atmospheric Chemistry and Physics, 7(12), 3055–3069. https://doi.org/10.5194/acp-7-3055-2007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free