A versatile CMOS transistor array IC for the statistical characterization of time-zero variability, RTN, BTI, and HCI

N/ACitations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Statistical characterization of CMOS transistor variability phenomena in modern nanometer technologies is key for accurate end-of-life prediction. This paper presents a novel CMOS transistor array chip to statistically characterize the effects of several critical variability sources, such as time-zero variability (TZV), random telegraph noise (RTN), bias temperature instability (BTI), and hot-carrier injection (HCI). The chip integrates 3136 MOS transistors of both pMOS and nMOS types, with eight different sizes. The implemented architecture provides the chip with a high level of versatility, allowing all required tests and attaining the level of accuracy that the characterization of the above-mentioned variability effects requires. Another very important feature of the array is the capability of performing massively parallel aging testing, thus significantly cutting down the time for statistical characterization. The chip has been fabricated in a 1.2-V, 65-nm CMOS technology with a total chip area of 1800 × 1800 μm2.

Cite

CITATION STYLE

APA

Diaz-Fortuny, J., Martin-Martinez, J., Rodriguez, R., Castro-Lopez, R., Roca, E., Aragones, X., … Nafria, M. (2019). A versatile CMOS transistor array IC for the statistical characterization of time-zero variability, RTN, BTI, and HCI. IEEE Journal of Solid-State Circuits, 54(2), 476–488. https://doi.org/10.1109/JSSC.2018.2881923

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free