Vertically resolved aerosol properties by multi-wavelength lidar measurements

32Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (Rf) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (die) and its spectral curvature Δdie. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of die and Δdie and to estimate the dependence on altitude of Rf and η(532 nm) from the die-Δdie combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26-0.67, 0.15-0.39, and 0.04-0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31-83, 32-84, and 11-47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. die values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value ± 1 standard deviation equal to 1.3 ± 0.7. Δdie varied within the-0.1-1 range with mean value equal to 0.25 ± 0.43. Rf and η(532 nm) values spanning the 0.05-0.3 μm and the 0.3-0.99 range, respectively, were associated with the die-Δdie data points. Rf and η values showed no dependence on the altitude. 60% of the data points were in the Δdie-die space delimited by the η and Rf curves varying within 0.80-0.99 and 0.05-0.15 μm, respectively, for the dominance of fine-mode particles in driving the AOT over south-eastern Italy. Vertical profiles of the linear particle depolarization ratio retrieved from lidar measurements, aerosol products from AERONET sun photometer measurements collocated in space and time, analytical back trajectories, satellite true colour images, and dust concentrations from the BSC-DREAM (Barcelona Super Computing Center-Dust REgional Atmospheric Model) model were used to demonstrate the robustness of the proposed method. © 2014 Author(s).

Cite

CITATION STYLE

APA

Perrone, M. R., De Tomasi, F., & Gobbi, G. P. (2014). Vertically resolved aerosol properties by multi-wavelength lidar measurements. Atmospheric Chemistry and Physics, 14(3), 1185–1204. https://doi.org/10.5194/acp-14-1185-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free