Vibration control of a Stirling engine with an electromagnetic active tuned mass damper

16Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Active tuned mass damper (ATMD) systems have been used extensively to reduce vibrations in machines. The motivation of this study is attenuating the vibrations in a Free-Piston Stirling Engine/Linear Alternator (FPSE/LA) for a frequency band of 47-53 Hz using an electromagnetic ATMD that employs a linear Voice Coil Motor (VCM) for periodic excitation rejection. To the authors' knowledge, however several approaches to minimize vibrations in Stirling machines have been patented, the technique proposed in this research differs from other patented work by the simplicity of the proposed control law which aims to attenuate the engine vibrations at the fundamental operating frequency. The proposed control system features a zero-placement technique that utilizes both relative or absolute position and velocity feedback from the system response as well as a feedthrough measurement of the disturbance frequency that is used to determine the position gain online. The performance of the control system with the ATMD was evaluated both theoretically and experimentally. A test rig emulating the vibration behavior of the Stirling engine, featuring an electrodynamic shaker and an ATMD was developed and a model of the rig is presented and validated. A novel experimental procedure of identifying unknown stiffness and unknown dynamic mass of a spring-mass system is also presented. Similarly, another experimental procedure of determining the damping coefficient in the electromagnetic ATMD is shown. The implementation findings illustrate that the proposed active controller succeeds in broadening the attenuation band from 50 ± 0.5 Hz to between 45 Hz and 55 Hz.

Cite

CITATION STYLE

APA

Hassan, A., Torres-Perez, A., Kaczmarczyk, S., & Picton, P. (2016). Vibration control of a Stirling engine with an electromagnetic active tuned mass damper. Control Engineering Practice, 51, 108–120. https://doi.org/10.1016/j.conengprac.2016.03.014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free