Abstract
A theoretical and numerical study of the effect of thermodiffusion on the stability of a gradient layer is presented. It intends to clarify the mechanisms of fluid dynamics and the processes which occur in a salinity gradient solar pond. A mathematical modelling is developed to describe the thermodiffusion contribution on the sotar pond where thermal, radiative, and massive fluxes are coupled in the double diffusion. More realistic boundary conditions for temperature and concentration profiles are used. Our results are compared with those obtained experimentally by authors without extracting the heat flux from the storage zone. We have considered the stability analysis of the equilibrium solution. We assumed that the perturbation of quantities such as velocity, temperature, and concentration are infinitesimal. Linearized equations satisfying appropriate prescribed boundary conditions are then obtained and expanded into polynomials form. The Galerkin method along with a symbolic algebra code (Maple) are used to solve these equations. The effect of the separation coefficient Ψ is anatyzed in thepositive and negative case. We have also numerically compared the critical Rayleigh numbers for the onset of convection with those obtained by the linear stability analysis for Le = 100, μa = 0.8, and f = 0.5.
Author supplied keywords
Cite
CITATION STYLE
Akrour, D., Tribeche, M., & Kalache, D. (2011). A theoretical and numerical study of thermosolutal convection: Stability of a salinity gradient solar pond. Thermal Science, 15(1), 67–80. https://doi.org/10.2298/TSCI1101067A
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.