Direct observation of electron transfer in solids through X-ray crystallography

0Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nanoscale electron transfer (ET) in solids is fundamental to the design of multifunctional nanomaterials, yet its process is not fully understood. Herein, through X-ray crystallography, we directly observe solid-state ET via a crystal-to-crystal process. We first demonstrate the creation of a robust and flexible electron acceptor/acceptor (A/A) double-wall nanotube crystal ([(Zn2+)4(LA)4(LA=O)4]n) with a large window (0.90 nm × 0.92 nm) through the one-dimensional porous crystallization of heteroleptic Zn4 metallocycles ((Zn2+)4(LA)4(LA=O)4) with two different acceptor ligands (2,7-bis((1-ethyl-1H-imidazol-2-yl)ethynyl)acridine (LA) and 2,7-bis((1-ethyl-1H-imidazol-2-yl)ethynyl)acridin-9(10H)-one (LA=O)) in a slow-oxidation-associated crystallization procedure. We then achieve the bottom-up construction of the electron donor incorporated-A/A nanotube crystal ([(D)2⊂(Zn2+)4(LA)4(LA=O)4]n) through the subsequent absorption of electron donor guests (D = tetrathiafulvalene (TTF) and ferrocene (Fc)). Finally, we remove electrons from the electron donor guests inside the nanotube crystal through facile ET in the solid state to accumulate holes inside the nanotube crystal ([(D•+)2⊂(Zn2+)4(LA)4(LA=O)4]n), where the solid-state ET process (D – e– → D•+) is thus observed directly by X-ray crystallography.

Cite

CITATION STYLE

APA

Ogata, D., Koide, S., Kishi, H., & Yuasa, J. (2024). Direct observation of electron transfer in solids through X-ray crystallography. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48599-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free