Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model

29Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), an N-acetyl serotonin derivative, selectively activates tropomyosin-related kinase receptor B (TrkB). This study is to investigate a potential role of HIOC on ameliorating early brain injury after experimental subarachnoid hemorrhage (SAH). One hundred and fifty-six adult male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. TrkB small interfering RNA (siRNA) or scramble siRNA was injected intracerebroventricularly 24. h before SAH. HIOC was administrated intracerebroventricularly 3. h after SAH and compared with brain-derived neurotrophic factor (BDNF). SAH grade and neurologic scores were evaluated for the outcome study. For the mechanism study, the expression of TrkB, phosphorylated TrkB (p-TrkB), phosphorylated extracellular signal regulated kinase (p-ERK), B-cell lymphoma 2 (Bcl-2) and cleaved caspase 3 (CC3) was detected by Western blots, and neuronal injury was determined by double immunofluorescence staining of neuronal nuclei and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling. Knocking down of TrkB decreased the expression of Bcl-2 and aggravated neurologic deficits 24. h after SAH. HIOC activated TrkB/ERK pathway, decreased neuronal cell death, and improved neurobehavioral outcome, and these effects were abolished by TrkB siRNA. HIOC was more potent than BDNF in reduction of apoptosis 24. h post-SAH. Thus, we conclude that administration of HIOC activated TrkB/ERK signaling cascade and attenuated early brain injury after SAH. HIOC may be a promising agent for further treatment for SAH and other stroke events.

Cite

CITATION STYLE

APA

Tang, J., Hu, Q., Chen, Y., Liu, F., Zheng, Y., Tang, J., … Zhang, J. H. (2015). Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiology of Disease, 78, 126–133. https://doi.org/10.1016/j.nbd.2015.01.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free