Comparison of climate reanalysis and remote-sensing data for predicting olive phenology through machine-learning methods

18Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Machine-learning algorithms used for modelling olive-tree phenology generally and largely rely on temperature data. In this study, we developed a prediction model on the basis of climate data and geophysical information. Remote measurements of weather conditions, terrain slope, and surface spectral reflectance were considered for this purpose. The accuracy of the temperature data worsened when replacing weather-station measurements with remote-sensing records, though the addition of more complete environmental data resulted in an efficient prediction model of olivetree phenology. Filtering and embedded feature-selection techniques were employed to analyze the impact of variables on olive-tree phenology prediction, facilitating the inclusion of measurable information in decision support frameworks for the sustainable management of olive-tree systems.

Cite

CITATION STYLE

APA

Azpiroz, I., Oses, N., Quartulli, M., Olaizola, I. G., Guidotti, D., & Marchi, S. (2021). Comparison of climate reanalysis and remote-sensing data for predicting olive phenology through machine-learning methods. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061224

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free