A Bayesian approach to combining multiple information sources: Estimating and forecasting childhood obesity in Thailand

0Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We estimate and forecast childhood obesity by age, sex, region, and urban-rural residence in Thailand, using a Bayesian approach to combining multiple source of information. Our main sources of information are survey data and administrative data, but we also make use of informative prior distributions based on international estimates of obesity trends and on expectations about smoothness. Although the final model is complex, the difficulty of building and understanding the model is reduced by the fact that it is composed of many smaller submodels. For instance, the submodel describing trends in prevalences is specified separately from the submodels describing errors in the data sources. None of our Thai data sources has more than 7 time points. However, by combining multiple data sources, we are able to fit relatively complicated time series models. Our results suggest that obesity prevalence has recently starting rising quickly among Thai teenagers throughout the country, but has been stable among children under 5 years old.

Cite

CITATION STYLE

APA

Bryant, J., Rittirong, J., Aekplakorn, W., Mo-Suwan, L., & Nitnara, P. (2022). A Bayesian approach to combining multiple information sources: Estimating and forecasting childhood obesity in Thailand. PLoS ONE, 17(1 January). https://doi.org/10.1371/journal.pone.0262047

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free