Life cycle greenhouse gas emissions and freshwater consumption associated with Bakken tight oil

36Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

In recent years, hydraulic fracturing and horizontal drilling have been applied to extract crude oil from tight reservoirs, including the Bakken formation. There is growing interest in understanding the greenhouse gas (GHG) emissions associated with the development of tight oil. We conducted a life cycle assessment of Bakken crude using data from operations throughout the supply chain, including drilling and completion, refining, and use of refined products. If associated gas is gathered throughout the Bakken well life cycle, then the well to wheel GHG emissions are estimated to be 89 g CO2eq/MJ (80% CI, 87-94) of Bakken-derived gasoline and 90 g CO2eq/MJ (80% CI, 88-94) of diesel. If associated gas is flared for the first 12 mo of production, then life cycle GHG emissions increase by 5% on average. Regardless of the level of flaring, the Bakken life cycle GHG emissions are comparable to those of other crudes refined in the United States because flaring GHG emissions are largely offset at the refinery due to the physical properties of this tight oil. We also assessed the life cycle freshwater consumptions of Bakken-derived gasoline and diesel to be 1.14 (80% CI, 0.67-2.15) and 1.22 barrel/barrel (80% CI, 0.71-2.29), respectively, 13% of which is associated with hydraulic fracturing.

Cite

CITATION STYLE

APA

Laurenzi, I. J., Bergerson, J. A., & Motazedi, K. (2016). Life cycle greenhouse gas emissions and freshwater consumption associated with Bakken tight oil. Proceedings of the National Academy of Sciences of the United States of America, 113(48), E7672–E7680. https://doi.org/10.1073/pnas.1607475113

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free