A modification in Weibull parameters to achieve a more accurate probability distribution function in fatigue applications

8Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Risk evaluation for fatigue failure of the engineering components is an important aspect of the engineering design. Weibull distributions are often used in preference to the log-normal distribution to analyze probability aspects of fatigue results. This study presents a probabilistic model for calculating Weibull distribution parameters to reduce the effect of percentage discretization error of experimental fatigue life and R–S–N curves for three reliability levels. By considering any result of standard fatigue test as an equivalent Weibull distribution, artificial data are generated and the accuracy of common Weibull distribution model can be improved. The results show error reduction in the Kolmogorov–Smirnov test and R-square values. Also, the Basquin model is used for different reliability levels with the same error order for risk evaluation of fatigue failure. The coefficient of variation for fatigue life increases at higher stress levels and has a linear relation with stress level for a high-cycle fatigue regime.

Cite

CITATION STYLE

APA

Fakoor, H., & Alizadeh Kaklar, J. (2023). A modification in Weibull parameters to achieve a more accurate probability distribution function in fatigue applications. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44907-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free