Concerns about transportation energy consumption and emissions force urban planners and policy makers to pay more attention to the effects of car ownership and use on the environment in China. However, few studies have investigated the relationship between the built environment and car ownership and use in China, especially in mid-sized and small cities. This study uses Changchun, China as a case study and examines the potential impacts of the built environment and socio-demographics on car ownership and use for commuting simultaneously using Bayesian multilevel binary logistic models. Furthermore, the spatial autocorrelation of car ownership and use is recognized across traffic analysis zones (TAZs), which are specifically represented by the conditional autoregressive (CAR) model. The estimated results indicate that socio-demographic characteristics have significant effects on car ownership and use. Moreover, the built environment measured at the TAZ level still shows a significant association with other factors controlled. Specifically, it suggests that denser residential density, compact land use, better transit services and street connectivity can reduce car dependency more effectively. This study provides new insights into how the built environment influences the car ownership and use, which can be useful for urban planners and policy makers to develop strategies for reducing car dependency.
CITATION STYLE
Wang, X., Shao, C., Yin, C., Zhuge, C., & Li, W. (2018). Application of Bayesian multilevel models using small and medium size city in China: The case of Changchun. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020484
Mendeley helps you to discover research relevant for your work.