Two-way interactions and feedback between hydrological and social processes in settled floodplains determine the complex human–flood system and change vulnerability over time. To focus on the dynamic role of individual and governmental decision making on flood-risk management, we developed and implemented a coupled agent-based and hydraulic modelling framework. Within this framework, household agents are located in a floodplain protected by a levee system. Individual behaviour is based on Protection Motivation Theory and includes the options to (1) not react to flood risk; (2) implement individual flood protection measures; or (3) file a complaint to the government. The government decides about reinforcing the levee system, compromising between a cost-benefit analysis and filed complaints from households. We found that individual decision making can significantly influence flood risk. In addition, the coupled agent-based and hydraulic modelling framework approach captures commonly observed socio-hydrological dynamics, namely levee and adaptation effects. It provides an explanatory tool for assessing spatial and temporal dynamics of flood risk in a socio-hydrological system.
CITATION STYLE
Michaelis, T., Brandimarte, L., & Mazzoleni, M. (2020). Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrological Sciences Journal, 65(9), 1458–1473. https://doi.org/10.1080/02626667.2020.1750617
Mendeley helps you to discover research relevant for your work.