Physiological plasticity and local adaptation to elevated pCO2 in calcareous algae: an ontogenetic and geographic approach

37Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

Abstract

To project how ocean acidification will impact biological communities in the future, it is critical to understand the potential for local adaptation and the physiological plasticity of marine organisms throughout their entire life cycle, as some stages may be more vulnerable than others. Coralline algae are ecosystem engineers that play significant functional roles in oceans worldwide and are considered vulnerable to ocean acidification. Using different stages of coralline algae, we tested the hypothesis that populations living in environments with higher environmental variability and exposed to higher levels of pCO2 would be less affected by high pCO2 than populations from a more stable environment experiencing lower levels of pCO2. Our results show that spores are less sensitive to elevated pCO2 than adults. Spore growth and mortality were not affected by pCO2 level; however, elevated pCO2 negatively impacted the physiology and growth rates of adults, with stronger effects in populations that experienced both lower levels of pCO2 and lower variability in carbonate chemistry, suggesting local adaptation. Differences in physiological plasticity and the potential for adaptation could have important implications for the ecological and evolutionary responses of coralline algae to future environmental changes.

Cite

CITATION STYLE

APA

Padilla-Gamiño, J. L., Gaitán-Espitia, J. D., Kelly, M. W., & Hofmann, G. E. (2016). Physiological plasticity and local adaptation to elevated pCO2 in calcareous algae: an ontogenetic and geographic approach. Evolutionary Applications, 9(9), 1043–1053. https://doi.org/10.1111/eva.12411

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free