New data analysis in a population study raises the hypothesis that particle size contributes to the pro-asthmatic potential of small pet animal allergens

12Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Background: The size of inhaled particles influences where they deposit and theoretically should be important for the development of airway inflammation and responsiveness. Our aim was to assess if sensitization to smaller-sized aeroallergens relates to higher prevalence of treated asthma, increased airway responsiveness, and airway and systemic inflammation. Methods: Molecular-based IgE antibody determination was done in 467 subjects. Sensitized subjects were grouped based on the particle size of the aeroallergen: (1) Large particles only (mainly pollen); (2) Medium-sized particles (sensitized to mainly mite and mold and possibly to large particles); and 3) Small particles (sensitized to pet allergens and possibly to medium- and/or large-sized particles). Airway responsiveness to methacholine, exhaled nitric oxide (FENO), and serum eosinophil cationic protein (S-ECP) were measured. Asthma and rhinitis were questionnaire-assessed. Results: Subjects sensitized to small particles had higher prevalence of treated asthma (35% versus 10%, P < 0.001), higher FENO50 (32 versus 17 ppb, P < 0.001), higher S-ECP (10 versus 7.5 ng/mL, P = 0.04), and increased bronchial responsiveness (dose-response slope, 5.6 versus 7.5, P < 0.001) compared with non-atopics. This was consistent after adjusting for potential confounders. Sensitization to only large or to medium and possibly also large aeroallergen particles was not related to any of these outcomes after adjustments. Conclusions: Sensitization to smaller particles was associated with a higher prevalence of asthma under treatment, higher airway responsiveness, and airway and systemic inflammation. Mapping of IgE sensitization to small particles might help to detect subjects having increased airway and systemic inflammation and bronchial responsiveness, indicating increased risk of developing asthma.

Cite

CITATION STYLE

APA

Patelis, A., Dosanjh, A., Gunnbjörnsdottir, M., Borres, M. P., Högman, M., Alving, K., … Malinovschi, A. (2016). New data analysis in a population study raises the hypothesis that particle size contributes to the pro-asthmatic potential of small pet animal allergens. Upsala Journal of Medical Sciences, 121(1), 25–32. https://doi.org/10.3109/03009734.2015.1109569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free