Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes

9Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Nanog is a pluripotency-related factor. It was also found to play an important role in tumorigenesis. To date, the mechanisms underlying cervical tumorigenesis still need to be elucidated. In the present study, Nanog mRNA was synthesized in vitro and transfected into HeLa cells. After mRNA transfection, the forced expressed of Nanog in HeLa cells led to markedly increased invasion, migration, resistance to chemotherapeutic agents and dedifferentiation. In a subcutaneous xenograft assay, these cells had significantly increased tumorigenic capacity. Real-time PCR indicated that Nanog-induced dedifferentiation was associated with increased expression of endogenous Oct4, Sox2 and FoxD3. In addition, the dedifferentiated HeLa cells acquired features associated with cancer stem cells (CSCs), such as multipotent differentiation capacity, and expression of CSC markers such as CD133. These data imply that Nanog is a positive regulator of cervical cancer dedifferentiation.

Author supplied keywords

Cite

CITATION STYLE

APA

Ding, Y., Yu, A. Q., Wang, X. L., Guo, X. R., Yuan, Y. H., & Li, D. S. (2016). Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes. Oncology Reports, 35(5), 2643–2650. https://doi.org/10.3892/or.2016.4639

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free