Data Collection Expert Prior Elicitation in Survey Design: Two Case Studies

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Data collection staff involved in sampling designs, monitoring and analysis of surveys often have a good sense of the response rate that can be expected in a survey, even when this survey is new or done at a relatively low frequency. They make expectations of response rates, and, subsequently, costs on an almost continuous basis. Rarely, however, are these expectations formally structured. Furthermore, the expectations usually are point estimates without any assessment of precision or uncertainty. In recent years, the interest in adaptive survey designs has increased. These designs lean heavily on accurate estimates of response rates and costs. In order to account for inaccurate estimates, a Bayesian analysis of survey design parameters is very sensible. The combination of strong intrinsic knowledge of data collection staff and a Bayesian analysis is a natural next step. In this article, prior elicitation is developed for design parameters with the help of data collection staff. The elicitation is applied to two case studies in which surveys underwent a major redesign and direct historic survey data was unavailable.

Cite

CITATION STYLE

APA

Wu, S., Schouten, B., Meijers, R., & Moerbeek, M. (2022). Data Collection Expert Prior Elicitation in Survey Design: Two Case Studies. Journal of Official Statistics, 38(2), 637–662. https://doi.org/10.2478/jos-2022-0028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free