Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water

12Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The hydrogen embrittlement susceptibility of near-peak-aged UNS N07718 (Alloy 718) was evaluated by performing slow strain rate tests at room temperature in air and substitute ocean water. Tests in substitute ocean water were accomplished in an environmental cell that enabled in situ cathodic charging under an applied potential of −1.1 V versus SCE. Some specimens were cathodically precharged for 4 or 16 weeks at the same potential in a 3.5 wt.% NaCl-distilled water solution at 50 °C. Unprecharged specimens tested in substitute ocean water exhibited only moderate embrittlement with plastic strain to failure decreasing by about 20% compared to unprecharged specimens tested in air. However, precharged specimens exhibited significant embrittlement with plastic strain to failure decreasing by about 70%. Test environment (air or substitute ocean water with in situ charging) and precharge time (4 or 16 weeks) had little effect on the results of the precharged specimens. Fracture surfaces of precharged specimens were typical of hydrogen embrittlement and consisted of an outer brittle ring related to the region in which hydrogen infused during precharging, a finely dimpled transition zone probably related to the region where hydrogen was drawn in by dislocation transport, and a central highly dimpled ductile region. Fracture surfaces of unprecharged specimens tested in substitute ocean water consisted of a finely dimpled outer ring and heavily dimpled central region typical of ductile fracture.

Cite

CITATION STYLE

APA

LaCoursiere, M. P., Aidun, D. K., & Morrison, D. J. (2017). Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water. Journal of Materials Engineering and Performance, 26(5), 2337–2345. https://doi.org/10.1007/s11665-017-2675-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free