Abstract
Watermelon (Citrullus lanatus) is a popular crop worldwide. Compared to diploid seeded watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and tetraploid watermelon produces few seedlings. To learn more about how genome duplication affects graft compatibility, we compared the transcriptomes of tetraploid and diploid watermelons grafted on squash rootstock using a splicing technique. WGCNA was used to compare the expression of differentially expressed genes (DEGs) between diploid and tetraploid watermelon grafted seedlings at 0, 3, and 15 days after grafting (DAG). Only four gene networks/modules correlated significantly with phenotypic characteristics. We found 11 genes implicated in hormone, AOX, and starch metabolism in these modules based on intramodular significance and RT-qPCR. Among these genes, two were linked with IAA (r2 = 0.81), one with ZR (r2 = 0.85) and one with POD (r2 = 0.74). In the MElightsteelblue1 module, Cla97C11G224830 gene was linked with CAT (r2 = 0.81). Two genes from the MEivory module, Cla97C07G139710 and Cla97C04G077300, were highly linked with SOD (r2 = 0.72). Cla97C01G023850.
Author supplied keywords
Cite
CITATION STYLE
Kaseb, M. O., Umer, M. J., Anees, M., Zhu, H., Zhao, S., Lu, X., … Liu, W. (2022). Transcriptome Profiling to Dissect the Role of Genome Duplication on Graft Compatibility Mechanisms in Watermelon. Biology, 11(4). https://doi.org/10.3390/biology11040575
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.