Abstract
Aiming to improve the flame retardancy performance of natural rubber (NR), we developed a novel flame retardant synergistic agent through grafting of MCM-41 to graphene oxide (GO), named as GO-NH-MCM-41, as an assistant to intumescent flame retardants (IFR). The flame retardancy of NR/IFR/GO-NH-MCM-41 composites was evaluated by limited oxygen index (LOI), UL-94, and cone calorimeter test. The LOI value of NR/IFR/GO-NH-MCM-41 reached 26.3%; the UL-94 ratings improved to a V-0 rating. Moreover, the addition of GO-NH-MCM-41 decreased the peak heat release rate (PHRR) and the total heat release (THR) of the natural rubber composites. Furthermore, the addition of GO-NH-MCM-41 increased the thickness of char residue. The images of SEM indicated the char residue was more compact and continuous. The degradation of GO-NH-MCM-41-based NR composites was completed with a mass loss of 35.57% at 600 °C. The tensile strength and the elongation at break of the NR/IFR/GO-NH-MCM-41 composites were 13.9 MPa and 496.7%, respectively. The results of the rubber process analyzer (RPA) reached the maximum value, probably due to a better network of fillers in the matrix.
Author supplied keywords
Cite
CITATION STYLE
Wang, N., Zhang, M., Kang, P., Zhang, J., Fang, Q., & Li, W. (2018). Synergistic effect of graphene oxide and mesoporous structure on flame retardancy of nature rubber/IFR composites. Materials, 11(6). https://doi.org/10.3390/ma11061005
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.