A machine-learned predictor of colonic polyps based on urinary metabolomics

31Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report an automated diagnostic test that uses the NMR spectrum of a single spot urine sample to accurately distinguish patients who require a colonoscopy from those who do not. Moreover, our approach can be adjusted to tradeoff between sensitivity and specificity. We developed our system using a group of 988 patients (633 normal and 355 who required colonoscopy) who were all at average or above-average risk for developing colorectal cancer. We obtained a metabolic profile of each subject, based on the urine samples collected from these subjects, analyzed via 1H-NMR and quantified using targeted profiling. Each subject then underwent a colonoscopy, the gold standard to determine whether he/she actually had an adenomatous polyp, a precursor to colorectal cancer. The metabolic profiles, colonoscopy outcomes, and medical histories were then analysed using machine learning to create a classifier that could predict whether a future patient requires a colonoscopy. Our empirical studies show that this classifier has a sensitivity of 64% and a specificity of 65% and, unlike the current fecal tests, allows the administrators of the test to adjust the tradeoff between the two. © 2013 Roman Eisner et al.

Cite

CITATION STYLE

APA

Eisner, R., Greiner, R., Tso, V., Wang, H., & Fedorak, R. N. (2013). A machine-learned predictor of colonic polyps based on urinary metabolomics. BioMed Research International, 2013. https://doi.org/10.1155/2013/303982

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free